Optimal discretization based refinement criteria for finite element adaption

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficiency-based hp-refinement for finite element methods

Two efficiency-based grid refinement strategies are investigated for adaptive finite element solution of partial differential equations. In each refinement step, the elements are ordered in terms of decreasing local error, and the optimal fraction of elements to be refined is determined based on efficiency measures that take both error reduction and work into account. The goal is to reach a pre...

متن کامل

Multilevel finite element preconditioning for √3 refinement

We develop a BPX-type multilevel method for the numerical solution of second order elliptic equations in R using piecewise linear polynomials on a sequence of triangulations given by regular √ 3 refinement. A multilevel splitting of the finest grid space is obtained from the non-nested sequence of spaces on the coarser triangulations using prolongation operators based on simple averaging proced...

متن کامل

Natural Hierarchical Refinement for Finite Element Methods

Current formulations of adaptive finite element mesh refinement seem simple enough, but their implementations prove to be a formidable task. We offer an alternative point of departure which yields equivalent adapted approximation spaces wherever the traditional mesh refinement is applicable, but our method proves to be significantly simpler to implement. At the same time it is much more powerfu...

متن کامل

Finite element discretization of a thermoelastic beam

We consider the steady case of a nonlinear model for a thermoelastic beam that can enter in contact with obstacles. We first prove the well-posedness of this problem. Next, we propose a finite element discretization and perform the a priori and a posteriori analysis of the discrete problem. Some numerical experiments confirm the interest of this approach. Résumé: Nous considérons le cas station...

متن کامل

Error Estimates for the Finite Element Discretization of Semi-infinite Elliptic Optimal Control Problems

In this paper we derive a priori error estimates for linear-quadratic elliptic optimal control problems with finite dimensional control space and state constraints in the whole domain, which can be written as semi-infinite optimization problems. Numerical experiments are conducted to ilustrate our theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Magnetics

سال: 1996

ISSN: 0018-9464

DOI: 10.1109/20.497498